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We investigate a data-driven multi-period inventory replenishment problem with uncertain demand and

vendor lead time (VLT), with accessibility to a large quantity of historical data. Different from the tradi-

tional two-step predict-then-optimize (PTO) solution framework, we propose a one-step end-to-end (E2E)

framework that uses deep-learning models to output the suggested replenishment amount directly from input

features without any intermediate step. The E2E model is trained to capture the behavior of the optimal

dynamic programming solution under historical observations, without any prior assumptions on the distri-

butions of the demand and the VLT. By conducting a series of thorough numerical experiments using real

data from one of the leading e-commerce companies, we demonstrate the advantages of the proposed E2E

model over conventional PTO frameworks. We also conduct a field experiment with JD.com and the results

show that our new algorithm reduces holding cost, stockout cost, total inventory cost and turnover rate

substantially compared to JD’s current practice. For the supply-chain management industry, our E2E model

shortens the decision process and provides an automatic inventory management solution with the possibility

to generalize and scale. The concept of E2E, which uses the input information directly for the ultimate goal,

can also be useful in practice for other supply-chain management circumstances.
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1. Introduction

Inventory management has been an active research topic in management science for over a century.

For comprehensive coverage on this topic, please refer to textbooks such as Zipkin (2000), Snyder

and Shen (2011). However, in today’s digital and fiercely competitive world, e-commerce companies

are facing new challenges in inventory management owing to the increasing level of customer

diversity, the increasing variety of products, and the higher level of service required. For example,

on large e-commerce platforms (such as Amazon and JD.com), hundreds of millions of products are

simultaneously sold, with various demand patterns that require different replenishment strategies.

Hence, it is critical to develop a framework that would be able to identify the optimal/close-to-

optimal strategy automatically for different demand, since they can’t manage these many products

efficiently by current practices.

Motivated by the previously mentioned requisite, we provide a framework that automatically

outputs the replenishment decisions for a large number of SKUs. More specifically, we consider the

multi-period inventory management problem over a finite horizon, while both demand and vendor

leadtime (VLT) are considered to be stochastic. The study of this kind of problem starts from

Kaplan (1970) and Ehrhardt (1984), where the merit of (s,S) policies and myopic base stock policies

are demonstrated. However, implementing such policies requires an estimation/prediction of certain

parameters/random variables then incorporating the estimation/prediction into those policies (see

Toktay and Wein (2001), Wang et al. (2012), Zhu and Thonemann (2004) as represnetatives ). This

type of solution paradigm where first predicting random variables of interest then incorporating

the forecast results into optimization stage is the so-called predict-then-optimize (PTO) solution

framework (Elmachtoub and Grigas (2017)). Although being widely adopted, it decouples the

prediction stage and optimization stage. Consequently, the optimization step does not use the input

data in an optimized manner and useful information can be substantially lost in the PTO process.

Instead of implementing a conventional two-step framework, we propose a data-driven, end-to-

end (E2E) framework for this problem. The term “end-to-end” means training a model to output

the inventory replenishment decision directly from input data without any intermediate steps.

The integration of prediction and optimization has been investigated in several existing works

about inventory management Ban and Rudin (2018), Oroojlooyjadid et al. (2016). Both Ban and

Rudin (2018) and Oroojlooyjadid et al. (2016) focus on the feature-based newsvendor problem,

which is essentially a quantile regression problem of demand and a direct recipe is provided by

statistical learning theory Koenker et al. (2005). However, the multi-period replenishment problem

is substantially different from newsvendor problem in two aspects: first, it adopts a multi-period

setting where current decisions affect the future instead of the single-period setting in newsvendor

problem; second, there are two types of uncertainties (stochastic demand and stochastic VLT),
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while newsvendor problem only considers one source of uncertainty (stochastic demand). Therefore,

the multi-period inventory problem is an essentially more complicated problem and there is no

simple closed-form solution for the optimal replenishment decision.

The lack of proper labels makes a fundamental challenge for developing an end-to-end supervised

learning framework in the multi-period setting. To overcome it, we propose a labeling method by

solving a dynamic programming problem and label each sample of order with the optimal decision

under its realization (Theorem 1). As for the choice of model structure, we design a modular deep

learning framework where we have an individual prediction block (a recurrent neural network) for

demand and an individual prediction block (a multiple layer perceptron) for VLT respectively. Then

these two blocks join together with other features such as review period and initial inventory, to

produce the final replenishment decision output. Compared with a fully connected neural network

over all features, our design reduces the computational complexity in magnitudes, while providing

convenience on explanation and good performance as well. Such a modular-designed framework,

together with the labeling process, could form a general recipe for developing End-to-End learning

models for other large-scale supply chain management problems. We conduct a series of thorough

numerical experiments that consist of both off-line comparisons and a field experiment. In off-line

numerical experiments, we compare the performance of the proposed E2E model with existing

PTO benchmarks using real-world datasets from JD.com. The results demonstrate that the E2E

model could reduce the total inventory management cost compared with multiple PTO methods.

The E2E algorithm has been implemented at JD.com for some SKUs in “tea set” and “pastry

essentials & seasoning” categories starting from February 2020. As JD.com gradually expanding

the number of SKUs with E2E algorithm implemented, we conduct a systematic field experiment

for 30 days from March 30, 2020 to April 30, 2020. The experiment involved 61430 orders placed

in 12 distribution centers for 9308 SKUs. We compare the performance of the E2E algorithm with

that of the retailer’s current replenishment algorithm. The results show that the E2E algorithm

dominates the current algorithm across all performance measures. More specifically, the average

holding cost, stockout cost, and total inventory cost for the treatment group are all reduced by

more than 25% compared with those for the control group, while two other metrics, the turnover

rate and stockout ratio, are reduced by 8.8% and 34.6%, respectively. Hypothesis tests conducted

confirm that all observed reductions are statistically significant. To further verify the effect of

the E2E algorithm, we adopt a difference in differences approach. The field experiment results

demonstrate the immediate applicability of the E2E method at JD.com.

Our work distinguishes itself from the existing literature in the following three aspects:

1. We are the first to propose an end-to-end framework for the multi-period replenishment

problem. Based on a labeling method that we proposed, our framework outputs replenishment
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decisions directly from input features. We believe this could be a general recipe for end-to-end

models while the optimization stage is complicated.

2. The proposed end-to-end learning framework automatically decides the replenishment strat-

egy for various demand patterns. Our approach outperforms multiple baseline models, including

the current practice of a leading online retailer in both offline simulations with real-life data and

the field experiment. The field experiment verifies the applicability of our algorithm for real-world

inventory management in the e-commerce industry.

3. We also innovate the design of deep neural networks structure by designing two modules for

demand and VLT uncertainty separately. Our design reduces the computational complexity and

the number of weights in magnitudes while achieving good performance.

Numerical results are reported in Appendixes B,C,D and E, which are summarized for easier

reference in the following:

1. Appendix B: We construct a well-controlled synthetic demand and VLT generating process

with a simple linear model for prediction. It is observed that, empirically, although PTO methods

achieve fairly good prediction accuracy of demand and VLT separately, the performance is still

worse comparing with that of the E2E method.

2. Appendix C: We conduct various sensitivity analysis with respect to different network struc-

tures, data sizes, hyper-parameters, and model covariates, and demonstrate the robustness of the

numerical results.

3. Appendix D: We provide basic statistics of the demand and VLT in the datasets we used for

the off-line experiments.

4. Appendix E: We demonstrate the experiments conducted using the inventory simulation plat-

form developed by JD.com. These results, together with the numerical experiments discussed in

Section 4, convinced JD.com to conduct the field experiment.

The remainder of the paper is organized as follows: In Section 2, we review the related literature.

In Section 3, we state the detail of problem setting and the E2E model. In Section 4, we test

our E2E model by conducting off-line numerical experiments with real-world data. In Section 5,

we demonstrate the design and results of the field experiment. Finally, we conclude in Section 6

and propose some potential future research directions. Moreover, Appendix A gives the detailed

proof of Theorem 1. A well-controlled synthetic data experiment with linear models are provided

in Appendix B. Sensitivity analysis of neural network architectures, datasets, and model covariates

are provided in Appendix C. Additional information of real-world datasets used in off-line numer-

ical experiments are stated in Appendix D. Finally, Appendix E states an additional numerical

experiment via a simulation environment of JD.com.
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2. Literature Review

In this section, we first briefly review existing methods for multi-period replenishment problem and

classic two-step PTO algorithms. After that, we discuss some existing literature on data-driven

approaches, as well as the emerging idea of integrating prediction and optimization for inventory

management problems, which is mainly based on the Newsvendor setting. Finally, we introduce

the development and applications of end-to-end approaches in other fields, which serves as the

incubator for the proposed E2E inventory management framework.

Multi-period inventory management problem has been studied in decades since Kaplan (1970).

Using dynamic programming, Kaplan (1970), Ehrhardt (1984) established the optimality conditions

for base stock and (s,S) policies under finite and infinite horizons, respectively. Although the

optimality of base stock policies has been proven under different settings (Iida and Zipkin (2006),

Gallego and Özer (2001), Muharremoglu and Tsitsiklis (2008)), calculating the optimal parameter

of such policy remains computationally intractable under general cases Levi et al. (2007). In order

to get computationally tractable algorithms, one option is to use approximation algorithms. For

example, Levi et al. (2007) provided 2-approximation algorithms using dual-balancing techniques.

The other option is to use heuristic algorithms such as myopic policies (see Veinott Jr (1965), Iida

and Zipkin (2006), Ignall and Veinott Jr (1969) as representative works).

However, all these aforementioned policies assume certain knowledge of demand and VLT (e.g.,

demand and VLT follow certain distributional models and the parameters of the model are known).

In practice, such information is often unveiled to decision-makers. Therefore, a two-step predict-

then-optimize (PTO) framework is widely adopted in industry for inventory management. The

PTO framework first forecasts demand and VLT then incorporates the prediction into certain

decision rules such as base stock and (s,S) policies stated above.

In the stage of prediction, there are two different types of forecasting methods for demand and

VLT. The output of forecasting can be a point estimator or a distribution of the random variable.

The first type of forecasting is widely adopted in industry since in some cases accurate prediction

can be achieved by machine learning models (e.g., Friedman et al. (2001)). However, point estima-

tion of random variables can lead to information loss, which affects the subsequent optimization

stage. In contrast, if we can make perfect forecast of the random variable distribution, we have all

the information in order to solve the following stochastic optimization problem. Recently, there are

works that develop distributional/probabilistic forecasting models. When the random variable does

not depend on external features, the distribution can be fitted by simply using empirical distribu-

tion of historical observations or by kernel density estimation (Sheather and Jones (1991)). When

the random variable depends on covariates, distributional/probabilistic forecasting becomes more
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difficult. A recent work by Bertsimas and Kallus (2020) uses a non-parametric method to approx-

imate the distribution of the random variable conditioned on covariates by weighted empirical

distribution. However, this benchmark is not applicable to numerical experiments using real-world

dataset that includes time series features, due to computationally difficulty. Böse et al. (2017)

forecast multiple quantiles of demand to gain more distributional information. Their approach

is similar to the benchmark BM1 in our offline numerical experiments. Ambrogioni et al. (2017)

propose another nonparametric method for conditional density estimation using kernel mixture

network. In their work, densities are assumed as linear combinations of a family of kernel func-

tions and the weights are determined by a deep neural network. Therefore, it requires a lot of

computational effort thus not applicable in our setting. Moreover, we want to highlight the fact

that, due to the multi-period setting in our problem, even though we have a practical method for

estimating the conditional distribution, solving corresponding stochastic dynamic programming is

also computationally difficult (we refer to Levi et al. (2007) for a more detailed review).

Since the traditional two-step approaches that separate the prediction from the optimization

often lead to sub-optimality, there has been a trend to perform these two steps simultaneously in the

recent literature on data-driven inventory management Ban and Rudin (2018), Oroojlooyjadid et al.

(2016), Liyanage and Shanthikumar (2005), Chu et al. (2008), Bertsimas and Kallus (2020). Such

integration attempts could be realized through operational statistics. Liyanage and Shanthikumar

(2005) demonstrated the existence of improved operational statistics (in contrast to the use of the

maximum likelihood estimator) by integrating the prediction and optimization steps on several

demand distributions; Chu et al. (2008) further studied how to obtain the optimal operational

statistics in a Bayesian framework. Both Liyanage and Shanthikumar (2005) and Chu et al. (2008)

only studied the Newsvendor problem.

Ban and Rudin (2018), Oroojlooyjadid et al. (2016) investigated the concept of integration in

the feature-based Newsvendor situation, where one has access to past demand observations, as

well as to a large number of related features. Ban and Rudin (2018) studied this problem with

the Newsvendor loss function and assumed a linear relationship between the features and the

Newsvendor quantile (i.e. the solution). They analytically showed that their approach can perform

better than the SAA and the separated estimation and optimization method. Oroojlooyjadid et al.

(2016) adopted a multiple-layer perceptron model that optimized the order quantity. However, all

the aforementioned works have been focused on the Newsvendor problem, in which neither the

connection between the periods nor the vendor lead time has been considered, which are both

important factors in practice.

Beyond inventory problems, Bertsimas and Kallus (2020), Elmachtoub and Grigas (2017) stud-

ied the “integration” philosophy for general optimization problems. Bertsimas and Kallus (2020)
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combined machine learning and optimization techniques for decision-making purposes when fea-

tures (referred to as auxiliary quantities in the paper) were available. Their idea was to construct

weight functions from data through machine-learning methods and to incorporate these weights to

the objective in the optimization procedure. Under the context of linear programming, Elmachtoub

and Grigas (2017) proposed a “smart PTO” framework that directly leveraged the optimization

problem structure forming the loss function.

Another branch of research that served as an impetus for our work originated from the machine-

learning community. In recent years, there has been a dramatic increase in the number of systems

built on “E2E learning” Donti et al. (2017). This term refers to a learning framework, the ultimate

goal of which is directly predicted from raw inputs rather than from intermediate steps. This

concept has been successfully applied to a wide range of tasks, such as finance Bengio (1997), image

recognition Wang et al. (2011) and robotics manipulation Levine et al. (2016). These lines of works

have provided certain valuable inputs to us in terms of integrating prediction and optimization;

however, such an “E2E” approach has not yet been studied with a focus on the general supply-chain

management problem.

3. Model

In this section, we first describe the multi-period replenishment problem; In Section 3.1, this

problem is presented with a dynamic programming framework. In Section 3.2, we explain our E2E

model with emphasis on its two key components, the property of the optimal dynamic programming

solution and the deep learning network structure.

3.1. The Multi-Period Replenishment Problem

In this work, we consider the multi-period inventory management problem with stochastic demand

and VLT. The details are as follows: for a single item at a single location, we consider a finite

horizon of discrete periods 1, . . . , T , where T is the end of the horizon. Over the T periods, there

is a sequence of random demands, denoted by Dt,∀t= 1, . . . T . Let It denote the inventory level at

the beginning of period t. The inventory level can be positive if we have inventory excess on hand

or negative if we have an inventory shortage and, hence, backorders. As a result, at the end of each

period, we either incur a holding cost of h for each excess unit or a stock-out cost of b for each

back-ordered unit.

We consider periodic review policies and assume that review periods are given as a sequence

of dates. That is, we assume there are totally M orders from period 1 to T that are placed at

tm,∀m= 1, . . . ,M . This assumption is aligned with the real-world practice, where a fixed schedule

is typically held for order placement (e.g., one can place orders on Tuesdays and Fridays). In this

problem, we consider the stochastic VLT. That is, the mth order placed at period t arrives at period
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t+L, where L is a random variable that only takes positive integer values. Hence, the arrival time of

orders, denoted by vm = tm +Lm, ∀m= 1, . . . ,M , are also random variables. Moreover, we assume

there are no crossing-over of order arrivals. Although some of the aforementioned assumptions may

be unrepresentative (such as back-order and no crossing-overs), in section 7 we relax some of them

and test our proposed method under a more realistic setting.

Hereafter, Dt and Lm will denote the random variables; dt and lm denote the realization of

demand at period t and the realization of VLT of the mth order, respectively. At each period, the

system first updates the inventory level by checking if any order has arrived; then, demand occurs.

Let am denote the order quantity for the mth order. At the end of the period, either a holding cost

or back-order cost occurs. The inventory level updates follow the equation below,

It+1 = It−Dt +
M∑
m=1

am1{t= tm +Lm}. (1)

Let the cost that occurred at period t be denoted by St, we have

St = h[It−Dt +
M∑
m=1

am1{t= tm +Lm}]+ + b[−It +Dt−
M∑
m=1

am1{t= tm +Lm}]+. (2)

where [·]+ denotes max{·,0}.

Our aim is to minimize the expected cost during the finite horizon by choosing the order quan-

tities at given periods, that is

min
a1,...,aM

E

[
T∑
t=1

St

]
. (3)

St is defined by (2) and the updates of It follow (1). Note that the expectation is taken over the

joint distribution of the demand {Dt}Tt=1 and the VLT {Lm}Mm=1.

3.2. End-to-End (E2E) Model

The goal of the replenishment problem is to determine the best order quantity, a : f(x)∈R at each

given review point, after having observed all the features, x. Such features can include historical

demand, VLT, item specifications, and temporal information (day, month, season).

To find the mapping function f(·), we first train the model with historical data. For each historical

replenishment time point, with observed feature vector xi, we need to compute a∗i , which is the

corresponding optimal order quantity. This step is referred to as “labeling” for supervised learning

algorithms (Section 2.1.4 James et al. (2013)). We will describe the details of the labeling method

in Section 3.2.1. When the associated label for each observation is completed, we can establish the

mapping with the following training objective:

min
f :X→R

N∑
i=1

L(f(xi);a
∗
i ) , (4)
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where N is the total number of training data, L is the loss function that is defined based on the

difference between the model prediction f(xi) and the optimal order quantity a∗i . In particular, we

consider neural network models for function f and we will describe the details of the neural-network

structure in Section 3.2.2.

3.2.1. Labeling the optimal order quantity Unlike the newsvendor problem, for which

the optimal solution is the b
b+h

quantile of demand distribution, the optimal solution of the multi-

period inventory problem is not straightforward to calculate. In this section, we will analyze the

properties of the optimal order solution, hence producing labels a∗i , i= 1, ...,N for the training set.

Given the order place and arrival time, and the demand at every time step, we can compute the

optimal quantity for each order using the dynamic programming framework. It should be noted

that within periods 1, . . . , T , there are M orders placed. Moreover, tm ∈ {1, . . . , T},m = 1, . . . ,M

denotes the time period in which the mth order is placed (the quantity can be 0). In a similar

manner, let vm denote the time when the mth order arrives. It should be stressed that we assume

no crossover of lead time. With given demand, we can formulate the recursion as

Vm(Ivm) = min
am≥0

vm+1−1∑
s=vm

h[Ivm +am−d[vm,s]]
+ +b[d[vm,s]−Ivm−am]+ +Vm+1(Ivm +am−d[vm,vm+1−1]),

(5)

where Vm(Ivm) is the optimal cost over interval [vm, vm+1− 1], d[i,j] :=
∑j

t=i dt.

The following theorem describes the closed-form solution of (5); hence, it provides an efficient

approach to label the training and testing data set.

Theorem 1. The optimal multi-period inventory replenishment problem described by (5) is

decomposable, i.e., a∗∗m := arg minam≥0

{∑vm+1−1

s=vm
h[Ivm + am − d[vm,s]]

+ + b[d[vm,s] − Ivm − am]+ +

Vm+1(Ivm +am−d[vm,vm+1−1])
}

= arg minam≥0

∑vm+1−1

s=vm
h[Ivm +am−d[vm,s]]

+ +b[d[vm,s]−Ivm−am]+.

In addition, the closed form of the optimal solution is a∗∗m = max{d[vm,s∗] − Ivm ,0}, where s∗ =

b b(vm+1−vm)

h+b
c+ vm.

Remark 1. Theorem 1 indicates that labeling using ex-post optimal order quantities is practi-

cal, i.e. computationally efficient for large dataset. If, instead of deterministic dynamic programs,

stochastic dynamic programs are solved to get labels, the labeling process becomes computationally

intractable.

3.2.2. Neural-network structure When the associated labels for training data are obtained,

we train a neural-network model f by solving the optimization problem in (4). The general structure

of the neural-network model is shown in Figure 1.

The inputs of the E2E model include five parts, where Input DF and Input VLT represent features

related to demand and VLT, respectively; Input basic is the set of general item-level features,
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Figure 1 Neural network structure of the E2E Model.

such as product categories, warehouse locations, and brand names. The remaining two features,

review period and initial stock level, are directly fed into one of the hidden layers because they are

not intended to generate any cross terms with other features. The E2E model has three outputs,

where the main output Out1∈R represents the final replenishment decision. In addition, there are

two accessory outputs Out2 as the demand forecast and Out3 as the VLT forecast.

All hidden layers, except for DF submodule, are fully connected layers with rectified linear unit

(ReLU) activation function and dropout layers Srivastava et al. (2014) to prevent overfitting. The

DF submodule is designed as a multi-quantile RNN (MQRNN), which receives multiple time series

(e.g., demand time series, promotion time series) as inputs and produces a daily demand prediction

over a set of quantiles as outputs. We use MQRNN because of its demonstrated performance in

demand forecasting in the e-commerce industry Wen et al. (2017), Fan et al. (2019).

The training objective function is defined as

min
θ

N∑
i=1

{
L(Out1i;a

∗
i ) +λ1L̂1(Out2i, a

∗
DF,i) +λ2L̂2(Out3i, a

∗
V LT,i)

}
, (6)

where θ is the set of neural network parameters to be optimized, N is the total number of training

data, and λ1, λ2 are two small positive constants penalizing the demand and VLT prediction error.

A few reasons lead us to include three terms in (6), rather than only the first term. First, the

optimization of the two forecasting outputs (i.e., Out2 as the demand forecast and Out3 as the

VLT forecast) act as a guide for faster model training. Without them, it becomes more difficult

for each submodule of the network to be trained as desired. Moreover, Out2 and Out3 can be used

for monitoring the model performance. While running the E2E model in real-time, the observation

of any anomalies in these two outputs can help decision-makers detect any abnormal output on

replenishment amounts and analyze the reason behind it.
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The above network structure is designed with the knowledge that the replenishment decision

would be made using the information of the demand and the VLT, whose feature sets hardly

overlap and are barely related. Thus, compared with a fully connected network over all features,

our design reduces the computational complexity and the number of weights in magnitudes, while

providing convenience on explanation and good performance as well.

4. Numerical Experiment

In this section, we test the performance of E2E model using real-world data. In Section 4.1, we

first compare the E2E model with several two-step predict-then-optimize (PTO) benchmarks, and

highlight the benefits of both the one-step decision framework and the deep learning architecture.

In Section 7, we evaluate the E2E model in a leading online retailer’s inventory simulation platform

and demonstrate its performance improvement over the retailer’s current inventory policy. In all

experiments, we use real data from a leading online retailer, which is one of the largest online

retailers in China. It owns hundreds of warehouses to manage inventory and has replenishment

agreements with tens of thousands of vendors. All neural networks are implemented in PyTorch

Paszke et al. (2017) and trained on a server with an NVIDIA Tesla P40 GPU.

4.1. Comparison with Two-Step Replenishment Methods

In order to show the performance of our E2E model, we compare the E2E model with several

currently in-use two-step PTO methods.

We start with two widely adopted base stock policies. In “Normal” base stock, the daily demand is

assumed to be independent and identically distributed (i.i.d.) and follows the Normal distribution.

Thus, the base-stock level is computed as

BMnormal = µD(R+µV LT ) +φ−1(
b

b+h
)
√

(R+µV LT )σ2
D +µ2

Dσ
2
V LT , (7)

where R is the review period. The mean (µD, µV LT ) and the standard deviation (σD, σV LT ) are

estimated using historical data that contains the demand and the VLT of the past 180 days.

Similarly, in “Gamma”, daily demand is assumed to be i.i.d. and follows Gamma distribution.

Hence, the sum of (R+ µV LT ) days of demand, denoted by D̄, follows Gamma((R+ µV LT )k, θ),

where θ and k are estimated using the demand data of the past 180 days. The base-stock level is

computed as

BMgamma =Qgamma

D̄
(

b

b+h
), (8)

where QD̄ denotes the quantile function of D̄.

In addition to the two base-stock policies, we also want to compare the E2E model with PTO

benchmarks. As mentioned earlier in Section 2, there are two different types forecasting in PTO
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method: one type of PTO method estimate a point prediction of the random variable while the other

type predicts the distribution of the random variable. If a PTO method succeeds to achieve perfect

prediction of the joint conditional distribution of demand and VLT, then theoretically, (3) can be

solved to optimality. However, as we reviewed in Section 2, there barely exists applicable method

for our problem setting. Moreover, even with reliable forecastings of the joint distribution, we still

need to solve a corresponding stochastic dynamic programming problem, which is computationally

intractable.

Therefore, we construct the following two PTO benchmarks using a MQRNN for demand fore-

casting and a MLP for VLT prediction for fair comparison.

1) BM1. First, we let d̂m =
∑vm+1−1

t=tm
dt denote the total demand within two adjacent order-

arrival times, namely tm and vm+1. Note that vm can be calculated based on VLT prediction. Then

the b/(b+h) quantile of d̂m is predicted, equivalent to solve the following problem:

min
am≥0

Ed̂m [b(d̂m− am− Itm)+ +h(am + Itm − d̂m)+], (9)

BM1 then can be considered as a PTO method with point prediction of VLT and distributional

forecasting of demand. In the optimization stage, the multi-period problem is approximated by a

single-period Newsvendor problem.

2) BM2. An alternative PTO method is to first sequentially forecast the future demand within

two adjacent order-arrival times, that is dtm , dtm+1, ..., dvm+1−1, and then calculate the optimal

decision, am, by minimizing the following accumulated inventory cost

min
am≥0

vm+1−1∑
t=vm

h[Itm + am− d[tm,t]]
+ + b[d[tm,t]− Itm − am]+. (10)

where vm is estimated as v̂m = tm + l̂m, and vm+1 is estimated as v̂m+1 = tm+1 + l̂m as well. Notice

that l̂m comes from Out3 as the VLT forecast and dt is the demand forecast. BM2 can be viewed

as a PTO method with point prediction for both VLT and demand, but in optimization stage, the

multi-period problem setting is kept.

The minimizers of (9) and (10) are denoted by a∗Bm1,m (BM1) and a∗Bm2,m (BM2), respectively.

Two benchmarks are employed because each of them emphasizes on different stages as a two-step

model. First, because predicting the total demand within a time interval is more likely to reach the

desired accuracy than predicting a sequence of demands for each day, the first benchmark could

yield better results in the prediction stage. However, by noticing that the objective in (9) contains

a newsvendor loss rather than the one in our multi-period setting, one can expect that the second

benchmark would yield results of higher accuracy in the optimization stage.
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Method Total cost Holding cost Stockout cost

OPT 3058.89 1751.89 1307.01

E2E RNN 3766.52 (+23.1%) 2689.02 1077.50

PTO1 4207.09 (+37.5%) 2502.55 1704.54

PTO2 4157.03 (+35.9%) 2254.99 1902.04

Normal 4531.87 (+48.2%) 3247.25 1284.62

Gamma 4476.17 (+46.3%) 2821.87 1654.30

E2E GBM 3977.19 (+30.0%) 2130.79 1846.40

Figure 2 Left: demand forecast for three example SKUs via MQRNN. Blue line is the ground truth, 10% and

90% quantile forecasts are the lower and upper boundary of the forecast band, and 50% (median) is the orange

line within the band. The shaded area is the forecast within the current order place time and next order arrival

time. Right: average inventory cost under different E2E and PTO polices over 30 days per SKU.

4.1.1. Results We test the performance of E2E method and the four PTO policies using

real-world data, a 24,333 SKUs dataset under the Food & Snack Category. The input vector for

each replenishment sample contains SKU profile features, daily sales, and historical VLT, which

is a 132-dimensional vector. The entire dataset are split into a training and a testing dataset

according to the creation date of each sample. We use the first 30-day replenishment-order data

as the training and validation set, where 80% of the data are used for training and the remaining

20% are used for validation. The validation set is used to evaluate the performance of the neural

network model for different combinations of hyper-parameter values, which helps to choose the

optimal hyperparameters and prevent over-fitting. The remaining 30 days of data for all SKUs

serves as the testing set. The performance of E2E model and benchmarks are evaluated by total

inventory management cost, holding cost and stockout cost, defined via (2). By default, the values

of b and h were set to 9 and 1, respectively.

The total inventory management cost, holding cost and stockout cost of different models over

the test period are listed in Figure 2 (right). The averaging holding cost and stockout cost were

computed as in (2). “OPT” refers to the optimal replenishment decisions obtained by solving the

replenishment problem with known demand and VLT, which is the same approach that is used

for the labeling of the data, as described in Section 3.2.1. For the two PTO methods “BM1” and

“BM2”, we use the same neural network architecture as the E2E model, that is an MQRNN1

for demand prediction and a 2-layer feedforward neural network for the VLT prediction. In this

experiment, the MQRNN model outputs Q= 6 quantile prediction, including mean and quantile

1 Predicting the total demand for Benchmark 1 and predicting the daily demand for Benchmark 2.
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levels at 10%, 60%, 70%, 80%, 90% and 95%. The results for BM1 and BM2 are reported based

on the best quantile with the lowest total cost.

Figure 2 shows that the proposed E2E deep learning model is the best compared to all bench-

marks. The advantages of end-to-end deep learning model are two-fold. On the one hand, the benefit

of using end-to-end framework rather two-step PTO framework can be observed by comparing the

cost of E2E RNN against BM1 and BM2. Since all three algorithms use the same deep learning

structure for demand and VLT prediction, while E2E RNN adopts one-step decision framework and

BM1, BM2 use two-step framework. We suspect that the prediction errors of demand and lead time

compound in the optimization stage. To avoid the accumulation of error, the end-to-end frame-

work shortens the decision process while targeting the ultimate optimization goal. On the other

hand, the benefit of deep learning model versus other statistical learning models can be observed

when comparing the E2E RNN cost and E2E GBM cost. E2E GBM denotes the performance of

the end-to-end LightGBM Ke et al. (2017) model, which is a decision tree based algorithm that

widely used in industry. Since the tree-based models are not able to process time-series features

(e.g., historical demand series), we use statistical summary of demand as features including the

mean, standard deviation and temporal differences. Both E2E RNN cost and E2E GBM algorithms

use the end-to-end decision framework, while the deep learning model has better representation

capacity and RNN is more powerful in modeling time series data.

5. Field Experiment

The proposed E2E algorithm has been implemented in JD.com since February, 2020. In this section,

we demonstrate the design and results of the field experiment.

5.1. Overview of JD.com’s Auto-Replenishment System

JD.com maintains a logistics network in China that consist of about 500 Distribution Centers (DC)

national-wide. Each DC manages its inventory using JD’s inventory replenishment system.

JD’s current inventory replenishment algorithm can be viewed as a two-step (PTO) decision-

making process empowered by machine learning techniques and industry expertise. In the first step,

the demand and VLT are predicted using state-of-the-art machine learning methods considering

seasonality, geographic effect, SKU and vendor heterogeneity. Fan et al. (2019) describes an effort

to the retailer’s advanced demand forecast using deep learning techniques. In the second step, the

inventory replenishment decision is made based on the predictions from the first step. Service level

used in current practice of JD.com is decided by a hyper-parameter called ”critical ratio” which is

consistent with the hyper-parameters b and h in E2E model. Generally speaking, the critical ratio

for different product category doesn’t have to be the same.
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In JD’s replenishment system, the performance of a replenishment algorithm is quantified by

five key metrics: stockout rate, turnover rate and the three metrics we used in Section 4.1 including

the total inventory management cost, holding cost and stockout cost. The stockout rate is defined

as the percentage of days that stockout occurs during the experimental period, i.e. it measures the

frequency of stockouts. The inventory turnover rate is calculated by dividing the average inventory

level of each day by the average demand.

5.2. Experiment Design

To test whether the proposed E2E algorithm leads to better replenishment decisions, we conducted

a field experiment during a 30 days period, from March 30, 2020 to April 30, 2020. The experiment

involved 61430 orders placed in 12 DCs for 9308 SKUs. The SKUs are from 18 third-level categories,

which belong to two second-level categories, namely Tea set and Pastry essentials & Seasoning.

The details of the categories that are involved in the field experiment are listed in Table 1.

Table 1 Details of Categories Involved in the Field Experiments

Second level categories Tea set Pastry essentials & Seasoning

Third level
categories

Tea set combination Baking supplies
Tea cup Flour

Tea kettle Mixed-grains
Tea tray Rice
Tea can Oil
Tea bowl Seasonings

Tea accessories Dry foods
Tea-ware decoration Convenience foods

Coffee set
Tea travel set

An E2E model is trained for the second-level category, Tea set, and for each third-level category

in the second-level category, Pastry essentials & Seasoning. In this experiment, we use h= 12 and

b= 88, which is consistent with the critical ratio of these categories. The field experiment contains

all replenishment orders placed after March 30, 2020 for each (SKU, DC) pair in the aforementioned

categories and twelve DCs. A treatment group involves 1052 SKUs and 6097 (SKU, DC) pairs in

total, are selected. The replenishment decisions of these (SKU, DC) pairs are made according to

the proposed E2E algorithm starting from March 30, 2020. For the remaining (SKU, DC) pairs,

replenishment decisions are made following JD’s current replenish algorithm. The (SKU, DC) pairs

in the treatment group are selected based on voluntary response from the marketing and retailing

team. It should be noted that the selection of treatment group among all candidate (SKU, DC)

pairs is due to management concerns and not intend to create biases between the treatment and

control group.
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To further address the issue of potential selection bias, we select the control group from the

remaining (SKU, DC) pairs using propensity score matching (with details stated in Section 5.2.1).

In addition, we use a linear regression model to test the performance difference of E2E and the

current algorithm in Section 5.3.2, which takes into account the slight difference of demand and

VLT between the treatment and control groups.

We collect daily inventory levels, daily sales, replenishment order placement and arrival dates

for all (SKU, DC) pairs in the field experiment to calculate the performance metrics including the

average holding cost, average stockout cost, average total cost, average turnover rate and average

stockout rate.

Moreover, JD’s logistics system adopts less restrictive setting compared to Section 3.2. Instead

of fully back-order, demand that can not be fulfilled by current inventory will be considered as

back-ordered only if it can be fulfilled by open purchased orders. (Open purchase orders refer to

those orders that have been placed but haven’t arrived, in other words, replenishment that is on

the way.) If it can not be fulfilled by open purchased orders, it will be considered as lost sales.

In addition, there may be cross-over of orders, i.e. orders may not arrive in the same sequence as

they are placed. Therefore, the field experiment can test the performance of the proposed E2E

algorithm in real-world setting.

5.2.1. Propensity score matching As explained earlier, the treatment group contains 6097

(SKU, DC) pairs, selected based on voluntary response, and all remaining (SKU, DC) pairs from

the categories listed in Table 1 are the candidate control group. In order to address the issue of

potential selection bias, we choose (SKU, DC) pairs in the control group by using propensity score

matching (see Rosenbaum and Rubin (1983) and Rubin and Waterman (2006) for references). For

propensity score matching, we use demand and VLT as cofounder variables. Figure 3 visualizes the

propensity score of control and treatment sets before and after matching. After matching, we have

a control group with same size as the treatment group.

5.3. Results

In this subsection, we first compare the performance of the two algorithms during the test period

using a two-sample t-test. Then to further adjust the potential differences in the treatment and

control groups, we train linear regression models for each outcome metric and check the significance

of the coefficients. Moreover, we evaluate the performances of both treatment and control groups

before the test period and apply the difference in differences technique to further confirm the effect

of applying the E2E method.

5.3.1. T-test results Table 2 demonstrates the results of t-test for the comparison of five

performance metrics: holding cost, stockout cost, total inventory cost, turnover rate, and stockout
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Figure 3 Propensity Score Matching

Table 2 Comparison of Performance of Two Algorithms: t-test Results

Holding Cost Stockout Cost Total Cost Turnover Rate Stockout Ratio
Treatment

Group
598.20 496.34 1094.54 18.59 0.17

Control Group 809.54 1027.93 1837.47 20.39 0.26
Difference -211.34(-26.1%) -531.59 (-51.7%) -742.93(-40.4%) 1.8(-8.8%) 0.09(-34.6%)

t-test p-value < 0.001 < 0.001 < 0.001 0.0102 < 0.001
Significance Yes **** Yes **** Yes **** Yes ** Yes ****

Note: ∗p < 0.1; ∗ ∗ p < 0.05; ∗ ∗ ∗p < 0.01; ∗ ∗ ∗ ∗ p < 0.001.

ratio. The E2E algorithm significantly reduces all five metrics with four out of five t-test p-values

< 0.001 and one p-value < 0.05. In particular, the E2E algorithm can reduce the average holding

cost by 26.1% and average stockout cost by 51.7%, compared to JD.com’s current replenishment

method. Not surprisingly, the total cost is reduced by 40.4%. The average turnover rate has also

been reduced by 8.8% and the stockout ratio reduced by 34.6%.

5.3.2. Linear regression Furthermore, one may have the concern that the treatment group

and the control group having slightly different average demand and average VLT might lead to

unreliable t-tests. To address this concern, we further consider the following linear regression model

for the outcomes of each metric,

Outcome = θ0 + θ1Is-E2E + θ2Ave-Demand + θ3Ave-VLT, (11)

where Is-E2E is a binary independent variable that represents if a SKU orders using E2E algorithm,

Ave-Demand is an independent variable that represents the average demand of a SKU and similarly

Ave-VLT represents the average VLT of a SKU.

The linear regression model plays a similar role as the t-tests. It aims to provide a better

comparison of the treatment and control groups’ average outcome by considering covariates that

may affect the outcome of the metrics. Table 3 demonstrates the coefficients and p-values of Is-E2E.
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Table 3 Comparison of Performance of Two Algorithms: Linear Regression

Holding Cost Stockout Cost Total Cost Turnover Rate Stockout Ratio
Coefficient -211.33 -531.53 -742.86 -1.16 -0.09

t-test p-value < 0.001 < 0.001 < 0.001 0.007 < 0.001
Significance Yes **** Yes **** Yes **** Yes *** Yes ****

Note: ∗p < 0.1; ∗ ∗ p < 0.05; ∗ ∗ ∗p < 0.01; ∗ ∗ ∗ ∗ p < 0.001.

Table 3 indicates that using the E2E algorithm leads to significant reductions on all five metrics

- holding cost, stockout cost, total cost, turnover rate and stockout ratio.

5.3.3. Difference-in-differences estimation To further study the effect of E2E algorithm

on all five metrics, we consider a difference in differences (DID) approach. To be more specific, we

evaluate the performance of the treatment and control groups from February 29, 2020 to March

29, 2020. We denote this period as the pre-experiment period. Then compare the performance

with that of the post-experiment test period, March 30, 2020 – April 30, 2020. During the pre-

experiment period, both treatment and control group adopt JD’s current replenish algorithm and

during the post-experiment period, the treatment group adopt the E2E algorithm while the control

group still follows JD’s algorithm.

Table 4 Difference-in-Differences Estimation of E2E algorithm

Treatment Group Control Group DID
Pre-Exp Post-Exp Change Pre-Exp Post-Exp Change

Holding Cost 688.13 598.20 -89.93 786.68 809.54 22.86 -112.79
Stockout Cost 880.50 496.34 -384.16 887.64 1027.93 140.29 -524.45

Total Cost 1568.63 1094.54 -474.09 1674.32 1837.47 163.15 -637.24
Turnover Rate 16.41 18.59 2.18 16.40 20.39 3.99 -1.81
Stockout Rate 0.24 0.17 -0.07 0.22 0.26 0.04 -0.11

Table 4 demonstrates the DID comparison of the effect of E2E algorithm implementation. In

Table 4, the terms “Pre-Exp” and “Post-Exp” denote the pre-experiment and post experiment

periods, respectively. The results indicate that the implementation of our proposed E2E algorithm

improves all five metrics. The readers may notice that, in the control group, there is a slight

increment of the post-experiment metrics compared to the pre-experiment metrics. Our conjecture

is that, as the economics in China begins to recover in March 2020, both demand and supply have

a larger scale in April compared to March.

6. Conclusions

In this work, we propose an E2E framework with deep learning models for multi-period replen-

ishment problems, without prior assumptions on future demands and on the VLT. The model is
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trained to capture the behavior of optimal solutions from a perfect knowledge of the future. Collab-

orated with an industrial partner, our proposed E2E model has been implemented in production

and we conduct a series of numerical experiments including a field experiment to demonstrate the

advantage of the proposed E2E model over conventional two-step PTO approaches and current

practices in industry. Our model, as well as the “E2E” philosophy, can be practically useful for the

industry because it shortens the decision process and provides a more automatic inventory manage-

ment solution. With the possibility of scaling and generalization, the proposed E2E model enables

higher inventory-management accuracy with a lower operational cost and fewer labor efforts.

In our paper, we suggest several opportunities for future research in the E2E concept for supply-

chain management. For instance, one potential direction would be trying to generalize the E2E

model to more general inventory management settings, such as multi-echelon cases and inventory

allocation problems. Another appealing direction would be constructing an E2E solution for jointly

deciding order quantity and ordering time.
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Appendix A: Proof of Theorem 1

In order to prove Theorem 1, we need the following lemma.

Lemma 1. Consider the total inventory cost within time period [t1, t2] as f(a) =
∑t2

s=t1
h[It1 +

a− d[t1,s]]
+ + b[d[t1,s]− It1 − a]+, where h is the unit holding cost and b is the unit back-order cost.

The optimal order quantity which minimizes the total cost is derived by arg mina∈R f(a) = a∗ =

d[t1,s∗]− It1 where s∗ = b b(t2+1−t1)

h+b
+ t1c.

Proof of Lemma 1 : First we show that a∗ takes the form of d[t1,s] − It1 , for some s ∈ [t1, t2].

It is evident that f(a) is convex and piece-wise linear, hence the optimal solution should be one

of the extreme point, which is d[t1,s] − It1 for some s. Now we need to choose s∗ such that s∗ =

arg mins∈{t1,...,t2}{f(d[t1,s] − It1)}. Note that for s ∈ {t1, . . . , t2}, choosing to satisfy one unit of

demand that occurred at period s generates a holding cost h(s− t1), while choosing not to satisfy

one unit of demand generates back-order cost b(t2 + 1− s), we will choose to satisfy the demand

unit that occurs at period s such that h(s − t1) ≤ b(t2 + 1 − s) = b(t2 + 1 − t1) − b(s − t1). The

above analysis is valid for all units that occurs in period s, hence we will choose to satisfy either

all demand units that occurs at period s or non of them. Hence we have s≤ s∗ for all s such that

h(s− t1)≤ b(t2 + 1− t1)− b(s− t1), which lead to the final solution s∗ = b b(t2+1−t1)

h+b
+ t1c . �

Lemma 1 leads to our final result of Theorem 1, on the optimal order quantity under the real-

ization of each sample data.

Proof of Theorem 1 : First, we relax the constraint am ≥ 0 and start from the last decision

aM . By Lemma 1, a∗M = mins∈{vM ,...,T}{d[vM ,s]− IvM } and s∗ = arg mins′∈{vM ,...,T}
∑T

s=vM
h[dvM ,s′ −

d[vM ,s]]
+ + b[d[vM ,s] − dvM ,s′ ]

+. It should be noted that s∗ only depends on the sequence {dt}Tt=vM .

Hence, f∗M := f(a∗M) =
∑T

s=vM
h[dvM ,s∗ − d[vM ,s]]

+ + b[d[vM ,s] − dvM ,s∗ ]
+ does not depend on IvM ;

hence, the decision of a∗M is independent to the decision of a∗M−1. By recursion, we can decompose

the decisions {a∗m}Mm=1 with corresponding period [vm, vm+1).

Now we consider the constraint am ≥ 0. It is not difficult to verify that with constraint am ≥ 0, we

can still compute a∗m use a∗m = arg minam≥0

∑vm+1−1

s=vm
h[Ivm + am − d[vm,s]]

+ + b[d[vm,s] − Ivm − am]+

in the sequence of a1, a2, . . . , aM . We let a∗∗m denote the optimal solution with constraint am ≥ 0.

Note that under this constraint, f∗m+1 depends on Ivm+1
. In fact, it is a non-decreasing function

of Ivm+1
, hence, a non-decreasing function of am. Suppose for m, following the above method, we

have a∗m < 0, then a∗∗m = 0 is not only the minimizer of fm(am) but also a minimizer of f∗m+1. �
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Appendix B: A Synthetic Linear Model

In this section we generate a synthetic dataset based on linear model and use linear regression mod-

els for both end-to-end method and predict-then-optimize method. We compare the replenishment

decisions of E2E and PTO with synthetic data under different settings. Moreover, the observation

of error accumulation in PTO methods might provide some insight on why E2E outperforms PTO.

First, we introduce the synthetic experiment setup. The synthetic dataset is generated by adopt-

ing linear model of demand and VLT. Particularly, we consider daily demand being linearly

depended on two features: x1, x2 and a random variable ε which represents the uncertainty of

demand. Similarly, VLT is considered as a linear function of another two features z1, z2 and an

integer-valued random variable ξ which represents the uncertainty of VLT. In this part, a periodic

review scheme is adopted with review period R within a finite horizon T . For convenience, T is

assumed to be T =MR for some integer M , where M denotes the number of orders in the horizon

for one SKU. By considering N SKUs, there are M ∗N total number of orders in each experiment.

An order i is placed at the beginning of each review period with a group of feature x1
i , x

2
i and

z1
i , z

2
i are realized. For the ith sample, demand in period t is generated by

di,t = a1x
1
i + a2x

2
i + εt,∀t∈ [mR, (m+ 1)R) (12)

where i= (n−1)∗M +m denotes the ith sample,i.e. the mth order of nth item, for all n= 1, . . . ,N

and m= 1, . . . ,M . Similarly, VLTs for each order are generated by

vi = b1z
1
i + b2z

2
i + ξi (13)

where i = (n− 1) ∗M +m, for all n = 1, . . . ,N and m = 1, . . . ,M . According to Theorem 1, the

optimal solution under a realization of demand and VLT can be approximated as

a∗∗m = max{d[mR,s∗]− ImR,0}, (14)

where s∗ = b bR
h+b
c+ vm +mR and vm denote the VLT for the order placed at time mR. Note that

the critical part of a∗∗m is d[mR,s∗]− ImR, we further let yOPT := d[mR,s∗]− ImR for convenience.

B.1 PTO models

We consider two benchmarks, referred to as PTO1 and PTO2, to compare with the E2E method.

In PTO1, we first forecast distribution of demand and VLT condition on covariates x1, x2 and z1, z2

using the KNN-method described in Bertsimas and Kallus (2020). To make this method applicable,

we further assume that each of the covariates x1, x2, z1, z2 has the same value among each review

period. Therefore, we avoid the burden of forecasting a series of demand distribution for each of

the upcoming days. Then we have the distribution of d̂m =
∑vm+1−1

t=tm
dt based on the forecasting of
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demand and VLT distribution. Then the order quantity of PTO1 is the optimal solution of (9),

which is equivalent to the b
b+h

quantile of d̂m:

aPTO1
m =Q−1

d̂m
(

b

b+h
) (15)

In PTO2, linear regression models are first conducted to fit daily demand and VLT. Let d̂ and

v̂ denote the prediction of demand and VLT generated by these models. Then we follow the BM2

described in Section 4, the order quantity of PTO2 model would be

aPTO2
m = max{0, (b bR

b+h
c+ v̂)d̂− ImR}. (16)

And similarly, yPTO2 = (b bR
b+h
c+ v̂)d̂− ImR.

B.2 End2End model

Notice the fact that d[mR,s∗] can be approximated as (b bR
b+h
c+ b1z

1 + b2z
2)(a1x

1 + a2x
2), which is a

linear combination of x1, x2, x1z1, x1z2, x2z2, x2z1. For the end-to-end model, we directly fit a linear

model for the order quantity:

yE2E = β1x
1 +β2x

2 +β3x
1z1 +β4x

2z2 +β5x
1z2 +β6x

2z1.

We first fit the model coefficients βi, i= 1, ...,6 using training data and yOPT , and then prediction

ŷe2e is generated via the fitted model accordingly.

B.3 Comparison

In this section, we compare the performance of E2E model and two PTO models with synthetic

data. Features x1
i , x

2
i , z

1
i , z

2
i are randomly generated from [1,2,3,4] uniformly, independent from

each other. Random innovations εt are generated according to a Normal distribution with zero

mean and variance σ2
d. The integer-valued noise ξ is generated from [−1,0,1] with probability p0

for being 0 and probability p1 = 1−p0
2

for being 1 and −1 .

With p0 = 1
3
, b = 0.9, h = 0.1 , Table 5 demonstrates performances of PTO1, PTO2 and E2E

model under different length of horizon. This experiment adopts N = 100 items in the dataset with

review period R= 5 and parameters a1 = 1, a2 = 1, b1 = 1, b2 = 1. In PTO1, the hyperparameter K

(for KNN) takes the value of 50, which is tuned to achieved a good performance. Demand MAPE

and VLT MAPE are test set mean absolute percentage error of demand and VLT prediction in

PTO2 method, defined as

Demand MAPE =
1

MN

MN∑
i=1

|di− d̂OPT2,i

di
| , (17)

VLT MAPE =
1

M

M∑
i=1

| li− l̂OPT2,i

li
| . (18)
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T OPT Cost E2E Cost PTO1 Cost(K=50) PTO2 Cost Demand MAPE VLT MAPE
30 152.18 197.82 224.24 225.50 6.09 17.24
40 194.93 248.70 299.87 289.94 6.08 17.16
50 226.93 299.54 351.44 342.78 5.99 17.03

Table 5 Comparison of PTO and E2E under different length of horizon.

Table 5 indicates that E2E method outperforms both PTO1 and PTO2 which represent PTO

method with distributional prediction and PTO method with point prediction, respectively. In the

meanwhile, the two PTO methods have comparable performance. The reason of E2E outperforms

PTO1 might be that PTO1 adopts a Newsvendor objective for d̂m, instead of the real multi-period

objective. In addition, PTO1 is much more time consuming compared to two other methods since

calculating the weights for conditional distribution requires higher complexity. Also tuning the

hyperparameter K requires a long training time. This is also one of the reasons that we do not

adopt this benchmark in section 4. As for PTO2, although fairly good predictions of demand and

VLT are achievable in PTO2, the prediction error may compound when calculating the final order

decision. Moreover, E2E outperforms PTO methods more under a longer horizon. The reason might

be that, with longer horizons, there are more decisions to make and a bad decision in earlier time

periods effect more remaining periods.

Table 6 compares the performance of E2E and two PTO methods under different levels of

uncertainties, where σ2
d and σ2

V LT denote the variance of demand and VLT respectively. As the

variance increases, the prediction error (MAPE) of demand and VLT increases, as well as the cost

for both E2E and PTO methods. Nevertheless, under all different levels of uncertainties, the E2E

method consistently achieves better performance than PTO method.

σ2
d OPT Cost E2E Cost PTO1 Cost (K=50) PTO2 Cost Demand MAPE VLT MAPE

0.05 196.83 258.26 299.62 291.53 6.39 16.94
1 204.182 263.15 304.14 298.00 14.42 16.93
2.25 211.47 272.12 307.28 300.20 35.35 16.65

Table 6 Comparison of PTO and E2E under different level of demand uncertainty.

σ2
V LT OPT Cost E2E Cost PTO1 Cost (K=50) PTO2 Cost Demand MAPE VLT MAPE

0.4 177.25 233.96 260.87 265.25 6.37 16.37
0.6 197.20 258.94 295.31 286.43 6.30 17.34
0.8 214.05 270.77 311.53 305.04 6.57 16.45

Table 7 Comparison of PTO and E2E under different level of VLT uncertainty.
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Appendix C: Sensitivity analysis

In this part, we conduct various sensitivity analysis to demonstrate the robustness and generaliza-

tion ability of proposed E2E model under different hyper-parameter choices, data size and model

covariates.

C.1 Sensitivity Analysis for Network Hyper-parameters

We first provide details of the neural network structure and hyper-parameters used in the E2E

model. In the training stage, we sweep through different combinations of hyper-parameters within

the considered range and use the validation set to choose the best hyper-parameter values, which

is shown below as the “Default Value” column.

Hyperparameter Default Value Range
DF submodule: MQRNN Hidden state size 50 {30, 40, 50, 60}
VLT submodule Layer size {50, 20} {100, 20}, {50, 20}, {30, 20}
(VLT layer 1, VLT layer 2)
Integration module Layer size {100, 100} {100}, {100, 100}, {100, 100, 100}, {100, 100, 100, 100}
(Layer 3, Layer 4)
Learning rate 0.001 {0.0001, 0.001, 0.01}
Learning rate decay 1e− 4 {1e-5, 1e-4, 1e-3}
Momentum 0.85 {0.8, 0.85, 0.9}
Mini-batch size 64 {64, 128, 256}
Weight initialization Gaussian µ= 0, σ= 0.01 {Gaussian, Uniform}
Activation Rectified linear unit (ReLU) {ReLU, tanh}
Dropout rate 0.2 {0.1, 0.2, 0.3, 0.4}

Table 8 Network hyper-parameters

In addition, in order to investigate the sensitivity of the E2E model performance stated in Section

4 with respect to the network structure and hyper-parameters, we provide three sets of sensitivity

tests with respect to the following hyper-parameters:

• Number of hidden layers

• Number of neurons/weights

• Learning rate

C.1.1 Number of Hidden Layers: To check the sensitivity of E2E model with respect to the

number of hidden layers, we adjust the number of hidden layers in the integration module. By

default, there are two hidden layers Layer 3 and Layer 4 both of size 100. We tried three other

variants: 1) keep only one hidden layer, i.e., Layer 3 of size 100; 2) have three hidden layers, i.e.,

Layer 3, Layer 4, Layer 5, each of size 100; 4) have four hidden layers, i.e., Layer 3, Layer 4,

Layer 5, Layer 6, each of size 100. We trained four different E2E models with the four different

network structures, and test their performance using the same dataset and experiment setup as in

Section 4.1.
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OPT E2E (1 layer) E2E (2 layers) E2E (3 layers) E2E (4 layers)
Total cost 3058.89. 4857.20 (+58.8%) 3766.52(+23.1%) 3822.69 (+25.0%) 3904.74(+27.7%)
Holding cost 1751.89 3919.17 2689.02 2453.32 2231.01
Stockout cost 1307.01 938.03 1077.50 1369.38 1673.73

Table 9 Sensitivity of E2E model w.r.t. to the number of hidden layers

Table 9 shows the total inventory management cost, holding cost and stockout cost of the four

E2E models with different number of hidden layers. When the hidden layer number is 1, the end-

to-end model performance is inferior to other benchmark models (in Figure 2) due to the lack of

representation capacity. In all other cases, the end-to-end models outperform the benchmarks. As

the number of hidden layers increases, the cost of end-to-end model first decreases then increases. By

having more layers, the network representation power increases and can better fit the relationship

between observation and the optimal order decision. However, an over-complicated network may

cause over-fitting in the training set and shows less generalization capacity in test set.

C.1.2 Number of Neurons/weights: To investigate the model sensitivity w.r.t. the number

of neurons, we sweep through [30,40,50,60] as the hidden state size of the demand prediction

modile (MQRNN), and compare the performance of the different networks.

OPT E2E (30) E2E (40) E2E (50) E2E(60)
Total cost 3058.89 3846.28(+25.7%) 3783.32(+23.7%) 3766.52(+23.1%) 3860.99(+26.2%)
Holding cost 1751.89 2886.45 2710.71 2689.02 2185.18
Stockout cost 1307.01 959.83 1072.61 1077.50 1675.81

Table 10 Sensitivity of E2E model w.r.t. to the number of neurons

Table 10 reports the total cost, holding cost and stockout cost of the four E2E models with

different number of neurons. As expected, as the number of hidden neurons increases, the E2E

model cost first decreases then increases. Similar as the effect of adding more layers, by adding more

neurons, the representation capacity of the neural network enhances. However, too many neurons

may lead to over-fitting in the training set and the trained network shows worse generalization

performance.

C.1.3 Learning rate: Learning rate is one of the most important hyper-parameter in neural

network training LeCun et al. (2015). Table 11 shows how different learning rate value affects

the performance of E2E model on the test set. If we further increase the learning rate to 0.1 or

larger, network training process becomes unstable and the training loss oscillates which leads to

much worse performance. When learning rate is 0.0001, the learnt model is slightly better than

our default setting (lr= 0.001) but the training time increases significantly.
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OPT E2E (lr =0.0001) E2E (lr =0.001) E2E (lr =0.01)
Total cost 3058.89 3744.28 (+22.4%) 3766.52(+23.1%) 4231.01(+38.3%)
Holding cost 1751.89 2424.71 2689.02 2350.98
Stockout cost 1307.01 1319.58 1077.50 1880.03

Table 11 Sensitivity w.r.t. to learning rate

C.2 Sensitivity Analysis for Data Size

In order to investigate the sensitivity w.r.t. training data size, we use [20%,40%,60%,80%,100%]

of the training data to train the end-to-end model. The cost and computational time of the E2E

model with different amounts of training data are provided in Table 12 and Figure 4.

Percentage Number of training data OPT cost E2E cost E2E Training time (s)
20% 3893 SKUs 3058.89 5608.01(+83.3%) 281.61
40% 7786 SKUs 3058.89 4765.52(+55.8%) 624.64
60% 11680 SKUs 3058.89 4226.84(+38.2%) 1022.57
80% 15573 SKUs 3058.89 3783.54(+23.7%) 1459.42
100% 19466 SKUs 3058.89 3766.52(+23.1%) 1830.36

Table 12 E2E Model Sensitivity w.r.t. to Training Data Size
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Figure 4 E2E Model Sensitivity w.r.t. to Training Data Size

C3. Sensitivity Analysis for b and h

All the previous simulations are based on the assumption that the ratio between unit stock-out

cost and unit holding cost is 9, which may not reflect the case in real world. Therefore, sensitivity

analysis with respect to different values of b/h is conducted below to validate our conclusion in

previous parts. It should be noted that different b/h ratios not only lead to different measurements

costs, but also change replenishment decisions for all models.

Figure 5 demonstrates total cost, holding cost as well as stockout cost of E2E model, OPT

decision and two base stock algorithms under different b/h ratios. According to these results, E2E
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Figure 5 Performance of each model with different ratios on b/h.

model is stable and closest to the optimal solutions in most cases, with respect to different choices

of b/h.

C4. Sensitivity for Different Neural Network Local Minima

Since the loss function of neural networks are highly non-convex and contain many local minima,

when training neural networks using stochastic gradient descent (SGD) methods (the classical way

of training neural networks), we are very likely to get stuck in one of the local minima. However,

several recent research experimenting with larger networks and SGD suggest that, while deep neural

networks do have many local minima, they consistently give very similar performance Choromanska

et al. (2015), Kawaguchi (2016). Consistent with the above results from machine learning literature,

we find the performance of our proposed E2E deep learning model has similar property in numerical

experiments. For instance, two different E2E models with the default network structure and hyper-

parameter are trained with different weight initialization (random seeds). Figure 6 visualizes the

final weights of VLT layer 1 of the two trained networks. And Table 13 provides the performances

of two networks on test data set. It can be observed that although the two network weights are

quite different, they have similar performances on the test set in terms of total cost, holding cost

as well as stockout cost.

OPT E2E (Network 1) E2E (Network 2)
Total cost 3058.89 3766.52(+23.1%) 3800.54(+24.2%)
Holding cost 1751.89 2689.02(+53.5%) 2766.67(+57.9%)
Stockout cost 1307.01 1077.50(-17.6%) 1033.87(-20.9%)

Table 13 Comparison of two E2E model performance with different initialization seeds.

C5. Local Explainability for E2E Model

Finally, we exam the E2E model performance with respective to some important model covariates,

e.g., initial inventory level and review period. In particular, we check the network performance

regarding some formal specifications Seshia et al. (2018) to ensure the network performance is

aligned with the common sense for inventory management. For example, if the initial inventory
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Figure 6 Network sensitivity w.r.t. local minima. The two plots show the weights of VLT layer1 of two neural

networks trained with different initialization.

level at time t1 is strictly greater than time t2 with all other covariates being same, then order

amount at t1 should be lower than t2. Similar for the review period, the order amount should be

higher when the the review period is longer.
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Figure 7 Order quantity as a function of covariates of different input features

Figure 7 visualizes the one-dimensional relationship between the E2E model output (order quan-

tity), initial inventory level and review period for 5 different SKUs. It should be noted that the same

trend holds for all SKUs, while the slope and shape might be different for different SKUs. Notably,

the sensitivity results of the end-to-end model with respective to both initial inventory level and

review period satisfy the monotonicity specification. As the initial inventory level increases, the

order quantity monotonically decreases. Once the initial inventory reaches certain threshold, the

order quantity reduces to 0 as there’s enough inventory before next review cycle and no need for

further ordering. Besides, the model output increases monotonically with respect to review period.

The longer the review period is, the more the order quantity should be.
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Appendix D: Dataset information

In this section, some basic statistical data about demand and VLT of the real-world dataset are

provided in order for readers to better understand the experiment results. Both datasets used in

Section 4.1 and Section 4.2 are SKUs under the Food&Snack Category from the leading e-commerce

company from different time period. The dataset in Section 4.1 is collected from 2018, and the

dataset in Section 4.2 for the retailer’s simulation platform test is newly collected in 2019.

D1. Dataset Statistics of Section 4.1

Among whole dataset, the average daily demand is µd = 21.4 while standard deviation of demand is

σd = 44.8. Average VLT over orders is µV LT = 6.7 with standard deviation σV LT = 3.3. Histograms

of demand and VLT of this data-set are provided as follows:

10
1

10
0

10
1

10
2

Average daily demand (Log)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fr
eq

ue
nc

y

Statistics of daily demand

0 5 10 15 20 25 30 35
VLT

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fr
eq

ue
nc

y

Statistics of VLT

Figure 8 Histogram Daily demand and VLT for Dataset used in Section 4.1

D1. Dataset Statistics of Appendix E

Histograms of demand and VLT for dataset that used in Section 4.2 are provided in Figure 9.

The average daily demand for this dataset is µd = 30.8 with standard deviation σd = 62.3, and the

average VLT is µV LT = 7.3 with standard deviation σV LT = 4.0.
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Figure 9 Histogram of daily demand and VLT for Dataset used in Section 4.2
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Appendix E: Numerical experiment with JD’s simulation platform
7.1. Real-world test

Besides offline numerical experiments stated in Section 4 and the field experiment stated in Sec-

tion 5, in this section we demonstrate the result of another type of numerical experiments using an

inventory simulation platform developed by JD.com. This simulation platform provides a simula-

tion environment for on-policy evaluation for an inventory algorithm. “On-policy” evaluation refers

to evaluate a policy by actually running it in a (simulated) environment, in contrast to “Off-policy”

evaluation, which assesses the performance of a specific policy with a test dataset generated by

other policies. It simulates an environment (demands, VLT, review period, etc.) based on plenty of

historical data and runs corresponding replenishment policies. This platform is used in JD.com to

support business decisions by comparing the performance of different inventory policies and answer

various ‘what-if’ questions, thus to accelerate development and deployment of new models. It serves

as the final step before any algorithm is delivered for real logistic systems in the JD.com.The sim-

ulation platform adopts same setting as JD.com’s logistic system – limited back-order as well as

cross-over of orders.

We test the E2E algorithm in the simulation platform and compare its performance against a

base-stock policy and the current practice in JD.com.
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Total cost 24792.28 22568.06 28189.29

Holding cost 19967.61 18009.10 24256.57

Stockout cost 4824.67 4558.95 3932.72

Stockout rate 0.105 0.104 0.105

Turnover rate 12.494 11.785 14.928

Loss sale SKU ratio 0.119 0.104 0.134

Figure 10 Comparison of different replenishment policies on the simulation platform. Left: inventory curves for

an example SKU produced by the simulation platform; Right: average 3 month inventory management cost,

stockout and turnover rate for each SKU under different policies.

The retailer’s current practice can be viewed as a two-step (PTO) decision making process

empowered by machine learning techniques and industry expertise. In the first step, the demand

and vendor lead time are predicted using state-of-the-art machine learning methods considering

seasonality, holiday effect, geographic effect, and SKU, vendor heterogeneity. Paper Fan et al. (2019)

describes an effort to the retailer’s advanced demand forecast using deep learning techniques, that

is in the same spirit as MQRNN and outputs multiple quantile predictions. In the second step, the
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inventory replenishment decision is made based on the predictions from the first step. The baseline

inventory policy used in the simulation platform is a Normal base stock policy, where for each SKU

inventory replenishment is triggered at a periodic review time. The order quantity is calculated

based on the demand forecast, vendor lead time forecast, and service level of each SKU.

Figure 10 presents the inventory curves under different policies for an example SKU in the

retailer’s simulation platform, and the table reports the performance metrics over all test data.


